PRODUCTION OF HYDROGEN PEROXIDE BY PHOTOSYSTEM II OF SPINACH CHLOROPLAST LAMELLAE

Erich F. ELSTNER and Dirk FROMMEYER

Institut für Botanik und Mikrobiologie, Technische Universität München, 8000 München 2, Arcisstrasse 21, FRG

Received 6 December 1977

1. Introduction

Isolated chloroplast lamellae produce the superoxide free radical ion (O_2^-) and hydrogen peroxide as a product of the dismutation of O_2^- [1-7]. This reaction is stimulated by autooxidizable electron acceptors of photosystem I and occurs in the presence of the natural electron acceptor system, ferredoxin and NADP, following the reduction of NADP [8,9]. The production of H_2O_2 by photosystem II in the presence of 15 μ M dibromothymoquinone (DBMIB) was reported [10,11].

From the thermodynamic point of view, only the reducing site of photosystem I is negative enough (reviewed [12]) to function as the one-electron donor for oxygen $(E_0^- \text{ for } O_2/O_2^{\cdot -} = -0.33 \text{ V } [13])$ if we assume that no divalent oxygen reduction occurs in chloroplasts [14].

A 2,3-dimethyl, 5,6-methylenedioxy p-benzoquinone-stimulated photophosphorylation coupled to oxygen uptake by isolated chloroplast lamellae was reported [15]. Dibromothymoquinone, an inhibitor of electron transport between the two photosystems [16,17] is not an inhibitor of this reaction [15].

We report here that the product of oxygen reduction by 2,3-dimethyl, 5,6-methylenedioxy p-benzo-quinone is H_2O_2 , apparently not derived via the dismutation of O_2 . as in the case of the photosystem I-driven autooxidation of reduced low potential dyes [5-7].

Abbreviations: MV, methylviologen; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea

2. Materials and methods

Chloroplast lamellae were obtained from isolated intact spinach chloroplasts [19] by recentrifugation in a hypotonic buffer medium.

The products of oxygen photoreduction were determined after incubation of chloroplast lamellae, containing 100 μ g chlorophyll, for 10 min at 18°C in Fernbach flasks (14 ml) with illumination (30 000 lux) from the bottom.

 O_2 was determined as NO_2 , produced from 0.5 mM hydroxylamine [9,20]. H_2O_2 was determined with the aid of NADH-peroxidase (Boehringer, Mannheim). Dibromothymoquinone (DBMIB) and 2,3-dimethyl, 5,6-methylenedioxy p-benzoquinone were gifts from Professor A. Trebst, Ruhr-Universität Bochum.

3. Results and discussion

Illuminated chloroplast lamellae in the absence of artificial electron acceptors produce H_2O_2 and, in the presence of 0.5 mM NH_2OH , nitrite. Nitrite formation from hydroxylamine can be used as indicator for O_2^- according to the equation:

$$NH_2OH + 2 O_2^- + H^+ \longrightarrow NO_2^- + H_2O_2 + H_2O$$
[9,20,21]

3.1. Effect of methylviologen (MV) on photosynthetic oxygen reduction

Illumination of chloroplast lamellae in the presence of MV yields an increased production of both H₂O₂

Table 1

Effects of 2,3-dimethyl, 5,6-methylenedioxy p-benzoquinone (DIMEB), dibromothymoquinone (DBMIB) and methylviologen (MV) on H₂O₂ formation and hydroxylamine oxidation by illuminated chloroplast lamellae

Additions (10 ⁻⁵ M)	Activity (µmol/mg chlorophyll/h)			
	H ₂ O ₂ formed		NO ₂ formed	
	– MV	+ MV	- MV	+ MV
None	11	36	4	13
DBMIB	9	15	0.2	0.3
DIMEB	30	35	2	0.6
DBMIB + DIMEB	25	33	0	0
DCMU	0	0	0	0
DCMU + DBMIB	1	1.2	0	0
DCMU + DIMEB	0.5	0.6	0	0
DCMU + DBMIB + DIMEB	2.5	3.6	0	0

The reaction system contained in 2 ml (mM): phosphate buffer (50), pH 7.8; NH₄Cl (2.5); MgCl₂ (2.5); chloroplast lamellae with 100 μ g chlorophyll; MV (5 × 10⁻⁶ M) where indicated and, in the NO₂⁻ vessels, NH₂OH (0.5). The reactions were conducted for 10 min at 18°C in white light (30 000 lux)

and O_2^- (table 1) indicating monovalent oxygen reduction and dismutation of O_2^- [4-7].

3.2. Influence of dibromothymoguinone and of 2,3-dimethyl, 5,6-methylenedioxy p-benzoquinone on photosynthetic oxygen reduction 10⁻⁵ M dibromothymoguinone or 10⁻⁵ M 2,3dimethyl, 5,6-methylenedioxy p-benzoquinone strongly inhibit monovalent oxygen reduction (NO₂⁻ formation from NH2OH) by illuminated chloroplast lamellae, both in the presence and in the absence of methylviologen. H₂O₂ formation in the absence of methylviologen is stimulated by 10⁻⁵ M 2,3-dimethyl, 5,6-methylenedioxy p-benzoquinone and slightly inhibited by 10⁻⁵ M dibromothymoquinone (table 1). As shown in fig.1, stimulation of H₂O₂ (and inhibition of O₂⁻) production (determined as NO₂⁻ formation from NH2OH) strongly depends on the concentrations of either dibromothymoquinone or 2,3-dimethyl, 5,6-methylenedioxy p-benzoquinone. As compared to methylviologen (MV), low concentrations (10⁻⁶ M) of dibromothymoquinone (DBMIB) by approx. 50% inhibit both O₂ (and H₂O₂ formation by illuminated chloroplast lamellae whereas higher concentrations (up to 10⁻³ M) stimulate H₂O₂)

while decreasing O_2^- formation (fig.1a,b). 2,3-Dimethyl, 5,6-methylenedioxy *p*-benzoquinone (DIMEB) at 10^{-6} M is not an inhibitor of photosynthetic oxygen reduction. Increasing concentrations (up to 10^{-3} M) stimulate H_2O_2 formation (fig.1a) and similarly to dibromothymoquinone inhibit O_2^- formation (fig.1b).

DCMU, an inhibitor of photosynthetic electron transport blocks O_2^- formation in all the tested systems by 100% while approx. 10–20% of the original rate of H_2O_2 formation can still be observed in the presence of either dibromothymoquinone or of 2,3-dimethyl, 5,6-methylenedioxy *p*-benzoquinone, or a combination of both (table 1, [10]).

The above results are interpreted as follows: dibromothymoquinone as well as 2,3-dimethyl, 5,6-methylenedioxy p-benzoquinone are reduced by compound(s) located between the sites of inhibition by 10^{-6} M DCMU and by 10^{-6} M dibromothymoquinone (DBMIB) [18] and function as two-electron donors for oxygen forming H_2O_2 without O_2^- as intermediate. These reactions are different to the known photosystem I-driven oxygen reductions [4–7]. Whether this two-electron transport to some extent can bypass or accept electrons before the DCMU

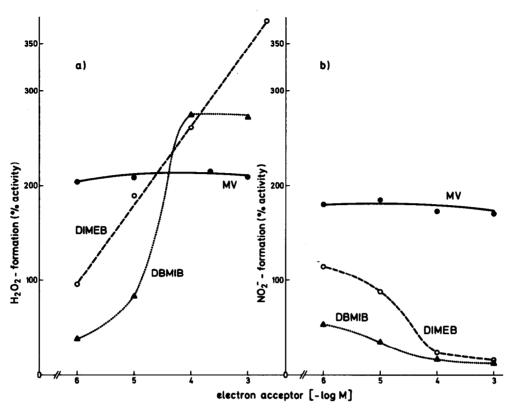


Fig. 1. Effects of different concentrations of MV, 2,3-dimethyl, 5,6-methylenedioxy p-benzoquinone (DIMEB) and dibromothymoquinone (DBMIB) on $\rm H_2O_2$ production (1a) and NH₂OH oxidation (1b) by illuminated chloroplast lamellae. The reaction conditions were as described in table 1.100% activity corresponds to either 10 μ mol $\rm H_2O_2$ or to 2.5 μ mol $\rm NO_2^-$ formed/mg chlorophyll/h in the absence of artificial electron acceptors.

block [10] needs further investigation. The question concerning the transition of one-electron to two-electron oxygen reduction mediated by compounds with different redox potentials is currently under investigation.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and the KWS-Kleinwanzlebener Saatzucht AG Einbeck (Hann.).

References

- [1] Mehler, A. H. (1951) Arch. Biochem. Biophys. 33, 65-77.
- [2] Bothe, H. (1969) Z. Naturforsch. 24b, 1574-1582.

- [3] Whitehouse, D. G., Ludwig, L. J. and Walker, D. A. (1971) J. Exp. Bot. 22, 772-792.
- [4] Asada, K. and Kiso, K. (1973) Agr. Biol. Chem. 37, 453-454.
- [5] Elstner, E. F. and Kramer, R. (1973) Biochim. Biophys. Acta 314, 340-353.
- [6] Epel, B. L. and Neumann, J. (1973) Biochim. Biophys. Acta 325, 520-529.
- [7] Allen, J. F. and Hall, D. O. (1973) Biochem. Biophys. Res. Commun. 52, 856-862.
- [8] Elstner, E. F. and Heupel, A. (1973) Biochim. Biophys. Acta 325, 182-188.
- [9] Elstner, E. F., Stoffer, C. and Heupel, A. (1975)Z. Naturforsch. 30c, 53-56.
- [10] Gould, J. M. and Izawa, S. (1973) Eur. J. Biochem. 37, 185-192.
- [11] Miles, C. D. (1976) FEBS Lett. 61, 251-254.
- [12] Goldbeck, J. H., Lien, S. and San Pietro, A. (1977) Arch. Biochem. Biophys. 178, 140-150.
- [13] Ilan, Y. A., Czapski, G. and Meisel, D. (1976) Biochim. Biophys. Acta 430, 209-224.

- [14] Asada, K. (1977) in: Intern. Conf. Singlet Oxygen and Related Species in Chemistry and Biology, Pinawa, Abstr. No. A-4.
- [15] Trebst, A., Reimer, S. and Dallacker, F. (1976) Plant. Sci. Lett. 6, 21-24.
- [16] Trebst, A., Harth, E. and Draber, W. (1970) Z. Naturforsch. 25b, 1157-1159.
- [17] Böhme, H., Reimer, S. and Trebst, A. (1971) Z. Naturforsch. 26b, 341-352.
- [18] Trebst, A. (1974) Ann. Rev. Plant Physiol. 25, 423-458.
- [19] Jensen, R. G. and Bassham, J. A. (1966) Proc. Natl. Acad. Sci. USA 56, 1095-1098.
- [20] Elstner, E. F. and Heupel, A. (1976) Anal. Biochem. 70, 616-620.
- [21] Bors, W., Lengfelder, E., Saran, M., Michel, C., Fuchs, C. and Frenzel, C. (1977) Biochem. Biophys. Res. Commun. 75, 973-979.